SYNTHESIS AND REARRANGEMENT OF 5-ISOTHIOCYANATOPYRAZOLINES

Vicente Gotor,^{*ª} Rosario Brieva,^a Mª Concepción Foces-Foces,^b and Félix Hernández Cano^b

- a) Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain
- b) Unidad estructural de Cristalografía, Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28026 Madrid, Spain

(Received in UK 30 December 1988)

Abstract- 1-(3-Iminoprop-1-enyl)-5-isothiocyanato-2-pyrazolines have been synthesized by reaction of hydrazine derivatives with carbon disulfide. These pyrazoline derivatives are precursors of pyrimidinylpyrazoles.

Hydrazine derivatives <u>1</u> are easily obtained by reaction of ketazines with saturated nitriles¹ and are useful precursors in the synthesis of heterocycles. ^{1,2} On the other hand, the usefulness of carbon disulfide as a synthetic reagent in the preparation of heterocycles and other organic compounds has been widely demonstrated.³

A few years ago, we reported that 4-amino-1-azabutadienes react with carbon disulfide to give pyrimidine-2(1H)-thiones.⁴ Moreover, ethyl chloroformate reacts with these azadienes⁴ and with the hydrazine derivatives $\underline{1}^2$ to yield pyrimidine-2(1H)-ones. Accordingly, we have thought it of interest to study the reaction of hydrazines 1 with carbon disulfide.

RESULTS AND DISCUSSION

Hydrazines <u>1</u> react with carbon disulfide <u>2</u> at 80°C (THF, sealed tube) giving 5-isothiocyanatopyrazolines <u>4</u> in high yields. The structure of <u>4</u> are deduced from their elemental analysis and spectral data; thus, compounds <u>4</u> display in their ir spectra a clear absorption at <u>ca</u>. 2000 cm⁻¹, which is assigned to the N=C=S stretching vibration. The ¹H-nmr spectra show the methylene group of the pyrazoline ring as a typical AB system with coupling constant of 19 Hz. This methylene carbon is found at <u>ca</u>. 50(t) ppm. in the ¹³C-nmr; The corresponding carbon resonance of the isothiocyanate group is not observed because of the large relaxation time of this tipe of carbon atom.

The formation of the pyrazoline $\underline{4}$ can be rationalised in terms of nucleophilic addition of the unsubstituted imme nitrogen atom to the heterocumulene to form the intermediate $\underline{3}$, which leads to the pyrazoline $\underline{4}$ by an intramolecular condensation reaction (see scheme I).

We thought that heterocycles $\underline{4}$ with attached isothiocyanate and azadiene groups should be, in principle, precursors of other heterocycles through simple intramolecular reactions. Surprisingly, pyrazolines $\underline{4}$ are stable in mild acid media. Thus, when these compounds are allowed to react with 1N H₂SO₄ or trifluoroacetic acid at room temperature, the starting heterocycles $\underline{4}$, are recovered. However, with more concentrated acid (5N H₂SO₄, room temperature) other unidentified products are found.

On the other hand, treatment of $\underline{4}$ with butyllithium gives rise to 3H-pyrazolo[1,5-a]pyrimidine $\underline{5}$, which is also obtained by hydrolysis of hydrazines $\underline{1}$.¹ The formation of compounds $\underline{5}$ can be explained by an attack of the imine anion to the quaternary carbon.

SCHEME I

Then, we studied the effect of heating pyrazolines $\underline{4}$ and found that pyrimidinylpyrazoles $\underline{6}$ are obtained as the major product (51-70% yield). Thus, treatment of a toluene solution of $\underline{4}$ at 130°C in a sealed tube affords the heterocycles $\underline{6}$ (see scheme II). In some cases, the pyrimidines $\underline{7}$ and the pyrazoles $\underline{8}$ are isolated as side products but with very low yields (see experimental section).

1784

Compounds <u>6</u>, <u>7</u> and <u>8</u> were characterized on the basis of their elemental analysis, ir, ¹H-nmr, ¹³C-nmr and mass spectral data; the structure of heterocycles <u>6</u> was unequivocally established by an X-ray single crystal structure analysis of <u>6a</u>. It is worth noting the position of R and R¹ in the pyrazole ring (figures 1 and 2).

Table 3 gives the main geometrical characteristics of the molecule (see Fig. 1). The four rings are so arranged that the two phenyl rings subtend an angle of 49° (see Fig. 2), with the pyrimidine ring slightly puckered in a 11-8 boat form.

The constitution of the pyrimidine and pyrazole rings agree with that found in a search through the CSD.⁶ The pyrimidine ring has alternately low values with C6-N11 and C6-N7 shorter than C8-N7 and C10-N11. The pyrazole ring presents angular values at N1 and at C3 higher than the other ones with

the N-C distances of different values due to N1-C5 and N-N distances longer than those reported by CSD.

Fig. 1. Molecular structure⁵ with the numbering system used in the crystallography work.

Fig. 2. The crystal packing⁵ as viewed down the c axis.

Table 3. Selected geometrical parameters (Å,°)

N1-N2	1.379(3)	N 2 - C 3	1.329(3)
C3-C4	1.409(4)	C4-C5	1.363(4)
C5-N1	1.379(3)	N1-C6	1.416(3)
C3-C14	1.473(4)	C5-C12	1.496(5)
C6-N7	1.322(3)	N 7 - C 8	1.349(3)
C8-C9	1.382(4)	C9-C10	1.379(4)
C10-N11	1.345(4)	N11-C6	1.335(3)
C8-C20	1.479(4)	C10-C13	1.504(5)

C5-N1-C6	129.4(2)	N2-N1-C6	118.2(2)
N2-N1-C5	112.4(2)	N1-N2-C3	103.9(2)
N2-C3-C4	111.7(2)	C3-C4-C5	106.6(2)
C4-C5-N1	105.4(2)	N2-C3-C14	121.4(2)
C4-C3-C14	126.9(2)	C4-C5-C12	127.6(3)
N1-C5-C12	126.9(3)	N1-C6-N11	116.1(2)
N1-C6-N7	115.8(2)	N7-C6-N11	128.1(2)
C6-N7-C8	116.4(2)	N7-C8-C9	120.4(2)
C8-C9-C10	118.1(2)	C9-C10-C11	122.3(3)
C6-N11-C10	114.6(6)	N7-C8-C20	116.6(2)
C9-C8-C20	122.9(2)	C9-C10-C13	121.6(3)
N11-C10-C13	116.1(3)		
N2-N1-C6-N11	-12.9(3)	N2-C3-C14-C19	38.5(4)
C9-C8-C20-C25	15.7(4)	N7-C6-N11-C10	-3.4(4)
N11-C6-N7-C8	1.3(4)	C6-N7-C8-C9	1.9(4)
N7-C8-C9-C10	-2,8(4)	C8-C9-C10-N11	0.6(4)
C9-C10-N11-C6	2,2(4)		

A tentative mechanism for the formation of $\underline{6}$ is shown in the scheme III. Thus, the intramolecular addition of the imine nitrogen atom to the heterocumulene to form the intermediate $\underline{9}$ takes place first; then, the rearrangement outlined in the scheme would account for the formation of pyrimidinylpyrazole $\underline{6}$. The isolation of pyrimidine $\underline{7}$ and pyrazole $\underline{8}$, although in very low yields, supports the postulated mechanism.

SCHEME III

Pyrimidinylpyrazoles, such as <u>6</u>, are scarcely known in the literature.⁷ Several metabolites with this skeleton have been identified in the human urine.⁸ Moreover, pyrimidinylpyrazoles are included in other more complex structures with biological activity.⁹

EXPERIMENTAL

The infrared spectra were recorded on a Pye-Unicam SP-1000 using KBr as support. The ¹H-nmr and ¹³C-nmr spectra were recorded on a Varian FT-80 A and on a Brücker Ac-300 spectrometers in deuteriochloroform, using TMS as internal standard, chemical shifts are expresed in δ (ppm) and the coupling constants, J, are measured in Hz. The mass spectra were recorded on a Hewlett Packard 5897 A and the elemental analysis were performed by Mikroanalytisches Perkin-Elmer 240. All the melting points were determinated on a Büchi apparatus and are uncorrected.

SYNTHESIS OF COMPOUNDS:

1-(3-Iminoprop-1-enyl)-5-isothiocyanato-2-pyrazolines. General procedure. A sample of 1 mM hydrazine derivative 1 was dissolved in 10 ml THF, and 0.6 ml (10 mM) of carbon disulfide were added. The mixture was heated at 80°C for 20 h in a sealed tube. The solvent was removed in vacuo and the product was purified by recrystallization from hot hexane/chloroform.

 $\frac{1-(3-\text{Imino}-1-\text{methyl}-3-\text{phenylprop}-1-\text{enyl})-5-\text{isothiocyanato}-3-\text{methyl}-5-\text{phenyl}-2-\text{pyrazoline}~(4a). Yield o. 34 g~(94 %). Mp. 195-198 °C. Ir (KBr): 2040 cm⁻¹ (N=C=S). IH-Nmr: 2.22 (s, 3H, CH₃), 2.70(s, 3H, CH₃), 3.57(d, J=18.9, 1H, CH₂) 4.30(d, J=18.9, 1H, CH₂), 5.76 (s, 1H, CH), 7.30-8.00(m, 10H, aromatic H). 13C-Nmr: 16.21(q), 18.36(q), 53.15(t), 78.56(s), 94.32(d), 123.55(d), 129.01(d), 129.04(d), 129.04(s), 129.37(d), 129.62(d), 133.62(d), 138.32(s), 155.23(s), 158.51(s), 166.17(s). Mass spectrum m/e: <math>360(M^+)$. Anal $(C_{21}H_{20}N_4S)$:found C, 70.10; H, 5.73; N, 15.65; calc. C, 69.70; H, 5.58; N, 15.52 %.

 $\frac{1-(3-\text{Imino}-1-\text{methyl}-3-\text{p-tolylprop}-1-\text{enyl})-5-\text{isothiocyanato}-3-\text{methyl}-5-\text{p-tolyl}-2-\text{pyrazoline} (4d). Yield 0.37 g (93 %). Mp. 130-133°C. Ir (KBr): 2050 cm⁻¹ (N=C=S). IH-Nmr: 2.22(s, 3H, CH₃), 2.31(s, 3H, CH₃), 2.41(s, 3H, CH₃), 2.64 (s, 3H, CH₃), 3.53(d, J=19.0, 1H, CH₂), 4.26(d, J=19.0, 1H, CH₂), 5.57(s, 1H, CH), 7.16-7.81(m, 8H, aromatic H). <math>1^{3}$ C-Nmr: 16.22(q), 18.32(q), 20.97(q), 21.55(q), 53.13(t), 78.41(s), 93.88(d), 123.47(d), 126.77(s), 128.96(d), 129.63(d), 130.11(d), 135.29(s), 139.67(s), 144.83(s), 154.87(s), 158.34(s), 165.85(s). Mass spectrum m/e: 388(M⁺). Anal. (C₂₃H₂₄N₄S): found C, 71.28; H, 6.32; N, 14.37; calc. C, 71.10; H, 6.23; N, 14.42 %.

 $\frac{1-(3-Imino-1,3-diphenylprop-1-enyl)-5-isothiocyanato-3,5-diphenyl-2-pyrazol-ine (4e). Yield 0.44 g (90 %). Mp. 148-151°C. Ir (KBr): 2050 cm⁻¹ (N=C=S).$ $<math>\frac{1}{H-Nmr}$: 4.08(d, J=18.5, 1H, CH₂), 4.75(d, J=18.5, 1H, CH₂), 6.17(s, 1H, CH), 7.25-8.29(m, 20H, aromatic H). $\frac{1}{3}$ C-Nmr: 49.28(t), 79.29(s), 95.10(d), 123.50(d), 127.63(d), 128.60(s), 128.84(d), 128.93(d), 129.07(d), 129.17(d), 129.35(d), 129.61(d), 129.71(s), 129.88(s), 130.21(d), 132.33(d), 133.09(d), 133.78(d), 138.81(s), 153.98(s), 159.63(s), 162.42(s). Mass spectrum m/e: 484(M⁺). Anal. $\binom{C_{31}H_{24}N_{4}S}{C_{31}E_{24}N_{4}S}$: found C, 76.91; H, 5.07; N, 11.37, calc. C, 76.83; H, 4.99; N, 11.56 S.

<u>Compounds 5. General procedure</u>. A sample of 0.5 mM isothiocyanatopyrazoline derivative 4 was dissolved in 10 ml THF. The mixture was cooled at 0°C. Then, 0.3 ml of 2.2N butyllithium were added. After being stirred 12h, the mixture was poured into ice-water. The organic layer was extracted with ether and THF and the combined extracts dried (Na $_2$ SO $_4$), filtered and evaporated. The residue was purified by recrystallisation from hexane. Spectroscopic data of these compounds were reported in reference 1.

<u>Compounds 6, 7 and 8. General procedure</u>. A sample of 0.5 mM isothlocyanatopyrazoline derivative 4 was dissolved in 10 ml toluene. The mixture was heated at 140°C in a sealed tube. The solvent was removed in vacuo and the products 6, 7 and 8 were purified by chromatography(Kleselgel 60, Merck) with chloroform. Some of the compounds 7 and 8 have only been detected in the spectral data of reaction crudes.

 $\frac{5-\text{Methyl}-3-\text{phenyl}-1-(5'-\text{methyl}-3'-\text{phenyl}-2-\text{pyrimidinyl}) \text{pyrazole.}(6a)}{0.08 \text{ g}(51 \text{ s}). \text{ Crystallized from hexane/chloroform. Mp. } 127-129^{\circ}. \text{ } 1_{\text{H-Nmr}}: 2.60 (s, 3H, CH_3), 2.80(s, 3H, CH_3), 6.55(s, 1H, CH), 7.15-8.10(m, 11H, aromatic H), 1^3 \text{C-Nmr}: 15.54(q), 24.59(q), 3107.04(d), 113.20(d), 126.26(d), 127.20(d), 128.12(s), 128.27(d), 128.85(d), 131.08(d), 132.69(s), 136.21(s), 143.30(s), 152.88(s), 157.57(s), 164.90(s), 170.21(s). Mass spectrum m/e : 326 (M⁺). Anal. (C₂₁H₁₈N₄): found C, 77.17; H, 5.60; N, 17.14, calc. C, 77.28; H, 5.56; N, 17.16 (s). 17.16 (s). 18.108 (s), 17.16 (s). 17.108 (s$

 $\begin{array}{l} \frac{2-Mercapto-6-methyl-4-phenylpyrimidine.}{1H-Nmr: 2.50(s, 3H, CH_3), 6.97(s, 1H, CH), 7.20-8.10(m, 5H, aromatic H).}{13C-Nmr: 20.14(q), 107.68(d), 127.10(s), 128.12(d), 128.71(s), 132.27(d), 134.82(s). Mass spectrum m/e: 202 (M⁺). Anal. (C₁₁H₁₀N₂S): found C, 65.53; H, 5.15; N, 13.58. calc. C, 65.32; H, 4.98; N, 13.858. \end{array}$

5-Methyl-3-phenylpyrazole. (8a). Yield 3.9mg (5%). Mp. 126-127°C. Spectroscopic data in reference 10.

 $\begin{array}{l} \frac{5-\text{Ethyl-3-phenyl-1-(5'-ethyl-3'-phenyl-2-pyrimidinyl)pyrazole.}{(6b)} & \text{Yield} \\ \hline 0.11\text{g} (61\text{s}) & \text{oil.} & \text{IH-Nmr:} & 1.20\text{-}1.60\,(\text{m}, 6\text{H}, \text{CH}_3), & 3.03\,(\text{q}, 2\text{H}, \text{CH}_2), & 3.40\,(\text{q}, 2\text{H}, 128, 29\,(\text{d}), & 128, 29\,(\text{d}), & 128, 29\,(\text{d}), & 132, 96\,(\text{s}), & 136, 47\,(\text{s}), & 149, 53\,(\text{s}), & 152, 84\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 143, 79\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}), & 3.40\,(\text{s}), & 3.40\,(\text{s}, 128, 29\,(\text{s}$

 $\frac{3-\text{Cyclohexyl-5-methyl-l-}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5-methyl-l-}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5-methyl-l-}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-methyl-1}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-methyl-1}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-methyl-1}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-methyl-1}(3'-\text{cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6c)} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl-2-pyrimidinyl)pyrazole}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-5'-phenyl-2-pyrimidinyl)pyrazole}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-phenyl-2-pyrimidinyl}{(6')} \\ \frac{3-\text{Cyclohexyl-5'-$

 $\frac{5-\text{Methyl}-3-\text{p-tolyl}-1-(5'-\text{methyl}-3'-\text{p-tolyl}-2-\text{pyrimidinyl}) \text{pyrazole}}{1} (6d). \\ \frac{5+\text{withyl}-3-\text{p-tolyl}-1-(5'-\text{methyl}-3'-\text{p-tolyl}-2-\text{pyrimidinyl}) \text{pyrazole}}{1} (6d). \\ \frac{5+\text{withyl}-3-\text{p-tolyl}-1-(5'-\text{methyl}-3'-\text{p-tolyl}-2-\text{pyrimidinyl}) \text{pyrazole}}{1} (6d). \\ \frac{13}{1} (55) (55) (51) (11) (1+\text{homr:} 2.30(s, 3H, CH_3), 2.33(s, 3H, CH_3), 2.56(s, 3H, CH_3), 2.73(s, 3H, CH_3), 6.50(s, 1H, CH), 7.10^{-8}.20(m, 11H, aromatic H). \\ \frac{13}{1} (5-1) (15, 49(q), 21.13(q), 21.25(q), 24.44(q), 106.88(d), 112.59(d), 126.03(d), 127.00(d), 128.89(d), 129.46(d), 129.76(s), 133.26(s), 137.77(s), 141.42(s), 143.05(s), 152.72(s), 164.63(s), 169.88(s). \\ \frac{12}{1} (2-1) (2-1$

V. GOTOR et al.

 $\frac{2-\text{Mercapto-6-methyl-4-p-tolylpyrimidine.}}{2.33(s, 3H, CH_3), 2.56(s, 3H, CH_3), 7.00-8.00(m, 5H, aromatic H).^{13}C-Nmr:}{13.04(q), 21.26(q), 120.82(d), 126.62(d), 129.36(d), 133.00(s), 138.91(s), 163.78(s), 167.75(s). Mass spectrum m/e: 216(M⁺). Anal. (C₁₂H₁₂N₂S): found C, 66.71; H, 5.40; N, 13.03, calc. C, 66.63; H, 5.59; N, 12.95^k.$

5-Methyl-3-p-tolylpyrazole. (8d). Yield 2.6 mg (3 %). Mp. 122-123°C. Spectroscopic data in reference 10.

X-Ray analysis of compound <u>6a</u>.

Crystallography analysis is summarized in Table 4 and the final atomic coordinates are presented in Table 5.

Table 4. Crystal analysis parameters at room temperature.

Crystal data

Formula Crystal habit Crystal size (mm) Symmetry Unit cell determination: Unit cell dimensions Packing: V(Å), Z Dc(g.cm ⁻¹), M, F(000) μ (cm ⁻¹)	$C_{21}H_{18}N_4$ Transparent prism 0.67 x 0.23 x 0.17 Orthorombic, $p_{2_1}2_{2_1}$ Least-squares fit from 95 Reflections ($\theta < 45^\circ$) 20.3985(10), 11.0489(3), 7.6715(2) Å 1733.5(1), 4 1.251, 326.4, 688 5.64
Experimental data Technique	Four circle diffractometer
rechnique	Bisecting geometry Graphite oriented monochromator: CuK_{α} $\omega/2\theta$ scans, scan width: 1.6° Detector aperture 1.0 x 1.0°
Total measurements	Up to 65° ιn θ
Speed	l min./reflec.
Number of reflections: Independent Observed Standar reflections:	1709 1542 [3σ(I) criterion] 2 reflections every 90 minutes Variation: no
Solution and refinement	
Solution Refinement Parameters:	Dırect methods L.S. on F _{obs} , full matrix
Number of variables Degrees of freedom Ratio of freedom	298 1244 5.2
H atoms	Difference synthesis
Weigthing scheme	Empirical as to give no trends in $\langle W\Delta^2 F \rangle$ vs. $\langle Fobs \rangle$ or $\langle (Sin \theta) / \lambda \rangle$
Max. Thermal value Final F peaks Final R and R	$\begin{array}{c} U_{11} \begin{bmatrix} C24 \\ -3 \end{bmatrix} = 0.093(3) A^{2} \\ 0.11 & e \cdot A^{-3} \\ 0.037, & 0.041 \end{array}$
Computer and programs Scattering factors	VAX 11/750 XRAY76 System[11], Multan80[12] Int. Tables for X-Ray Crystallography[13]

1790

^U eq ⁼	(1/3) · Σ(U · a*	·a* ·a ·a · Cos	(a _i ,a _j))	
АТОМ	x/a	y/b	z/c	Ueq.104
Nl	0.3645(1)	0.0766(2)	0.2171(3)	359(6)
N 2	0.3614(1)	0.1317(2)	0.3777(3)	391(6)
C 3	0.3099(1)	0.2047(2)	0.3655(4)	366(9)
C4	0.2804(1)	0.1981(3)	0.2001(4)	422(8)
С5	0.3153(1)	0.1152(2)	0.1072(4)	401(8)
C6	0.4130(1)	-0.0131(2)	0.1900(4)	356(7)
N 7	0.4062(1)	-0.0791(2)	0.0479(3)	357(6)
C8	0.4517(1)	-0.1659(2)	0.0216(4)	370(8)
C9	0.5009(1)	~0.1849(3)	0,1421(4)	430(8)
C10	0.5036(1)	~0.1094(3)	0.2848(4)	440(8)
Nll	0.4601(1)	-0.0199(2)	0.3102(3)	422(7)
C12	0.3044(2)	0.0768(4)	-0,0771(5)	613(12)
C13	0.5566(2)	~0.1217(4)	0.4197(6)	627(12)
C14	0.2885(1)	0.2797(2)	0.5134(4)	385(8)
C15	0.2218(1)	0.2975(3)	0.5412(4)	491(9)
C16	0.1996(2)	0.3680(3)	0.6767(5)	582(11)
C17	0.2433(2)	0.4233(3)	0.7861(5)	643(12)
C18	0.3098(2)	0.4080(4)	0.7587(5)	697(13)
C19	0.3325(1)	0.3358(3)	0.6247(5)	555(10)
C20	0.4468(1)	-0.2349(2)	-0.1426(4)	398(8)
C21	0.4067(1)	-0.1947(3)	-0.2765(4)	455 (9)
C 2 2	0.4015(2)	-0.2592(3)	-0.4304(4)	558(10)
C23	0.4359(2)	-0.3657(4)	-0.4507(5)	669(12)
C24	0.4760(2)	-0.4064(3)	-0.3190(6)	711(13)
C25	0.4820(2)	-0.3421(3)	-0.1660(5)	542(10)

Table 5. Final atomic coordinates and thermal parameters as in:

Lists of the structure factors, thermal components and hydrogen parameters have been deposited with the Cambridge Crystallographic Database.

ACKNOWLEDGEMENTS

We are grateful to CAICYT (Projet 396/85) for financial support of this work. R. B. thanks Ministerio de Educación y Ciencia for a Predoctoral Scholarship.

REFERENCES

- 1. J. Barluenga, L. Muñiz, V. Gotor, J. Chem. Soc., Chem. Commun., 1982, 454.
- 2. J. Barluenga, L. Muñiz, M. J. Iglesias, V. Gotor, Synthesis, 1985, 1146.

3. M. Yocoyama, T. Imamoto, Synthesis, 1984, 797.

- 4. J. Barluenga, M. Tomás, V. Rubio, V. Gotor, <u>J. Chem. Soc., Chem. Commun.</u>; 1979, 675.
- 5. W. D. S. Motherwell (1978) PLUTO. A program for plotting crystal and molecular structures: Cambridge University. England.
- 6. F. H. Allen, S. Bellard, M. D. Brice, B. A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B. G. Hummelink-Peters, O. Kennerd, W. D.S. Narthe-well, J. R. Rogers, D. G. Watson., <u>Acta Cryst</u>. 1979, <u>B35</u>, 2331.

V. GOTOR et al.

- J. Elguero in "Comprehensive Heterocyclic Chemistry", Vol. 5, Chapter 4.04, 1984, Pergamon Press.
- 8. R. Dohmori, R. Yoshimura, S. Kitahara, Y. Tanaka, T. Naito, <u>Chem. Pharm.</u> <u>Bull.</u>, 1970, <u>18</u>, 1908; Y. Tanaka, M. Sano, <u>ibid</u>, 1976, <u>24</u>, 804.
- 9. K. Ueno, A. Akashi, T. Moroi, T. Yamazaki, H. Kojima, A. Kasahara, Japan. Pat. 42,072 (1973), trough <u>Chem. Abs.</u>, 1974, <u>81</u>, 3933q.
- 10.J. Barluenga, L. Muñiz, M.J. Iglesias, V. Gotor, <u>J. Chem. Soc. Perkin</u> <u>Trans. I</u>, 1984, 611.
- 11.P. Main, S. J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J. P. Declercq,
 M. M. Woolfson, <u>Multan 80 System</u>, 1980. University of York. England.
- 12.J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck, H. Flack, The <u>X-Ray System</u>, 1976. Technical report TR-446. Computer Science Center. University of Maryland. USA.
- 13.International Tables for X-Ray Crystallography, Vol. IV, 1974, Birmingham. Kynoch Press. England.